I An OpenDocument Developers Kit
| (ODDK)

I What do we need to make
Application Developers Productive with ODF?

Rob Weir
IBM OpenDocument Day
robert weir@us.ibm.com KDE aKademy 2006

http://www.robweir.com/blog Dublin

mailto:robert_weir@us.ibm.com

The potential

 ODF - a platform and application neutral
office file format

* Document data is no longer trapped in
proprietary black box binaries

» This can lead to a “golden age” of document
processing, both client and server side, with
much innovation

* “We have it in our power to create the world
over again” -- Thomas Paine

More than just editors

(20 Prototypical App Dev Scenarios)

1.Interactive creation in an a heavy-weight
client application

2.Interactive creation in a light-weight web-
based application

3.Collaborative (multi-author) editing

4.Automatic creation in response to a database
query (report generation)

5.Indexing/scanning of document for search

20 Prototypical
App Dev Scenarios

6.Scanning by anti-virus

[.Other types of scanning, perhaps for
regulatory compliance, legal or forensic
purposes

8.Validation of document, to specifications,
house style guidelines, accessibility best
practices, efc.

9.Read-only display of document on machine
without the full editor (viewer)

10.Conversion of document from one editable
format to another

20 Prototypical
App Dev Scenarios

11.Conversion of document into a presentation format,
such as PDF, PS, print or fax

12.Rendering of document via other modes such as sound
or video (DAISY Talking Book)

13.Reduction/simplification of document to render on a
sub-desktop device such as cell phone or PDA.

14 .Import of data from an office document into a non-office
application, i.e., import of spreadsheet data into statistical
analysis software.

15.Export of data from a non-office application into an
office format, such as an export of a spreadsheet from a
personal finance application.

20 Prototypical
App Dev Scenarios

16.Application which takes an existing document and
outputs a modified version of that presentation, e.g., fills
out a template, translates the language, eftc.

17 .Software which adds or verifies digital signatures on a
document in order to control access (DRM)

18.Software which uses documents in part of a workflow,
but treats the document as a black box, or perhaps is
aware of only basic metadata.

19.Software which treats documents as part of a workflow,
but is able to introspect the document and make
decisions based on the content.

20.Software which packs/unpacks a document into
relational database form.

I The Problem

I » 706 page ODF Specification

* No objections to it as a specification — it is
what it needs to be

* Written from the perspective of word
processor implementors

* Too much to ask the average app developer
to master

Analogy with XML --
I Who actually reads this stuff?

]
3.3.3 Attribute-Value Normalization

Before the value of an attribute is passed to the application or checked for validity, the XML processor MUST normalize the attribute value by applying the als
other method such that the value passed to the application is the same as that produced by the algorithm.

1. Allline breaks MUST have been normalized on input to #xA as described in 2.11 End-of-Line Handling, so the rest of this algorithm operates on text

2. Begin with a normalized value consisting of the empty string.
3. For each character, entity reference, or character reference in the unnormalized attribute value, beginning with the first and continuing to the last, do th
o For a character reference, append the referenced character to the normalized value.
> For an entity reference, recursively apply step 3 of this algorithm to the replacement text of the entity.
> For a white space character (#¢20, #xD, #xA, #x9), append a space character (#x20) to the normalized value.
o For another character, append the character to the normalized value.

If the attribute type is not CDATA, then the XML processor MUST further process the normalized attribute value by discarding any leading and trailing space
replacing sequences of space (#x20) characters by a single space (#x20) character.

Note that if the unnormalized aftribute value contains a character reference to a white space character other than space (#x20), the normalized value contail
(#xD, #xA or #x9). This contrasts with the case where the unnormalized value contains a white space character (not a reference), which is replaced with a s
normalized value and also contrasts with the case where the unnormalized value contains an entity reference whose replacement text contains a white spac
processed, the white space character is replaced with a space character (#x20) in the normalized value.

All attributes for which no declaration has been read SHOULD be treated by a non-validating processor as if declared CDATA.

What is really used is SAX

endElement

public void endElement (java.lang.S5tring uri,
java.lang.5tring localName,
java.lang.S5tring gllame)
throws SAXException

Recerve notffication of the end of an element.

The SAX parser will involee this method at the end of every element in the XML document; there will be a corresponding starcElement ¢

For information on the names, see startElement.

Parameters:
uri - the Namespace URI, or the empty string if the element has no Namespace URI or if Wamespace processing is not being petfo
localName - the local name (without prefix), or the empty string if Namespace processing is not being performed
giame - the qualified XML name (with prefix), or the empty string if qualified names are not available
Throws:
SE¥Exception - any SAX exception, possibly wrapping another exception

public

public

public

public

public

public

public

public

public

public

And DOM

Hode getParentNHNode () :

HodeLi=zt getChildNodes() :

Hode getFirstChild():

Hode getLastChild():

Hode getPreviou=sSibling():

Hode getMextS5ibling():

HamedNodeMap gethttribute=z() !

Document getOwnerDocument () ;

Hode insertBefore (Node newChild,
Hode refChild)
throws DOMException:

Hode replaceChild(Node newChild,

Hode oldChild)
throws DOMException:

Proposal

We need an ODF API that exposes a higher level
abstraction of ODF to application developers, so
they can quickly become productive with ODF
processing without having to master a 700 page
specification

“Create a loan amortization spreadsheet in 30 lines of code”

Desirables

* Open source

* A convergent effort — bring together the
projects that are already working in this area

» Wide range of language bindings, Java,
Python, Ruby, C++, etc.

» Consider the APl itself for standardization

This becomes the preferred way of working
with ODF, the layer that the innovation builds
upon

Some design ideas

« Useful to think of the toolkit in three classes:

- The document representation — ODF DOM
* Represents the state of the document, with get/set
methods for manipulation. sheet.setCell("A1”,“hello”)

- A Parser class that takes an input stream and
produces an ODF DOM object from it

— A Serializer class that takes an ODF DOM object
and writes it to an output stream

I Modes of use

— Create empty ODF DOM object, query a
database, set data into the ODF object, then
create Serializer to write it out to ODF document.

» Search engines
— Create Parser, pass in stream to ODF document,
create ODF DOM object, call methods to query
document contents
* Mail Merge
- Create parser, pass in stream, get ODF DOM
object, find and replace content in the DOM, and
then create a Serializer to write it out again

I * Report generation

I Key insight

» Factored this way, an additional opportunity
I emerges:

- Is ODF the only source/destination format of the
Parsers and Serializers”? So long as they
produce/consume ODF, who cares what the
underlying data stream is?

- Why not have an ExcelParser that reads an
Excel document and creates an ODF DOM from
it?

- Why not have an PDFSeralizer that takes an
ODF DOM document and renders it as PDF?

Hub

ODF Parser \ / Office Serializer

and Spokes Model

ODF Seriahzer

WordPerfect Senalizer
H
Othce Parser - g, (ODF DOM
//' T | SmartSuite Senalizer

WordPerfect Parser

SmartSutte Parser

e

PDF Senalizer

HTIML Parser

DocBook Senalizer

I What you end up with

» A family of Parsers and Serializers which can be

treated polymorphically (pluggable), using a common
ODF DOM representation

« Could become the preferred way to manipulate all
office-like documents, not just ODF

* Makes choice of file format irrelevant from the
perspective of the application developer
- Creating an app that supports ODF & Office is the
same cost as creating one that supports only Office
- Reduces switching costs == greater ODF adoption

I Things that we can build on

* OpenOffice.org UNO API's

I * Apache POI (http://jakarta.apache.org/poi/)
- Java code for reading/writing MS Office binary
formats

 Apache FOP can render to PDF and SVG

* OpenDocument Fellowship has
- ODT to HTML
- DocBook to ODT

» J. David Eisenberg has some code in XSLT,
Java and Ruby (http://books.evc-cit.info/odf _utils/)
* Probably many others

http://jakarta.apache.org/poi/
http://books.evc-cit.info/odf_utils/

The end

A fuller exposition of this topic can be read in my
essay “Proposal for an OpenDocument Developers
Kit (ODDK)” posted on XML.org at

http://opendocument.xml.org/node/154

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

