
An OpenDocument Developers Kit
(ODDK)

What do we need to make
Application Developers Productive with ODF?

Rob Weir
IBM
robert_weir@us.ibm.com
http://www.robweir.com/blog

OpenDocument Day
KDE aKademy 2006
Dublin

mailto:robert_weir@us.ibm.com

The potential

● ODF – a platform and application neutral
office file format

● Document data is no longer trapped in
proprietary black box binaries

● This can lead to a “golden age” of document
processing, both client and server side, with
much innovation

● “We have it in our power to create the world
over again” -- Thomas Paine

More than just editors
(20 Prototypical App Dev Scenarios)

1.Interactive creation in an a heavy-weight
client application

2.Interactive creation in a light-weight web-
based application

3.Collaborative (multi-author) editing
4.Automatic creation in response to a database
query (report generation)

5.Indexing/scanning of document for search

20 Prototypical
App Dev Scenarios

6.Scanning by anti-virus
7.Other types of scanning, perhaps for
regulatory compliance, legal or forensic
purposes

8.Validation of document, to specifications,
house style guidelines, accessibility best
practices, etc.

9.Read-only display of document on machine
without the full editor (viewer)

10.Conversion of document from one editable
format to another

20 Prototypical
App Dev Scenarios

11.Conversion of document into a presentation format,
such as PDF, PS, print or fax

12.Rendering of document via other modes such as sound
or video (DAISY Talking Book)

13.Reduction/simplification of document to render on a
sub-desktop device such as cell phone or PDA.

14.Import of data from an office document into a non-office
application, i.e., import of spreadsheet data into statistical
analysis software.

15.Export of data from a non-office application into an
office format, such as an export of a spreadsheet from a
personal finance application.

20 Prototypical
App Dev Scenarios

16.Application which takes an existing document and
outputs a modified version of that presentation, e.g., fills
out a template, translates the language, etc.

17.Software which adds or verifies digital signatures on a
document in order to control access (DRM)

18.Software which uses documents in part of a workflow,
but treats the document as a black box, or perhaps is
aware of only basic metadata.

19.Software which treats documents as part of a workflow,
but is able to introspect the document and make
decisions based on the content.

20.Software which packs/unpacks a document into
relational database form.

The Problem

● 706 page ODF Specification

● No objections to it as a specification – it is
what it needs to be

● Written from the perspective of word
processor implementors

● Too much to ask the average app developer
to master

Analogy with XML --
Who actually reads this stuff?

What is really used is SAX

And DOM

Proposal

We need an ODF API that exposes a higher level
abstraction of ODF to application developers, so
they can quickly become productive with ODF
processing without having to master a 700 page

specification

“Create a loan amortization spreadsheet in 30 lines of code”

Desirables

● Open source
● A convergent effort – bring together the

projects that are already working in this area
● Wide range of language bindings, Java,

Python, Ruby, C++, etc.
● Consider the API itself for standardization

This becomes the preferred way of working
with ODF, the layer that the innovation builds
upon

Some design ideas

● Useful to think of the toolkit in three classes:

– The document representation – ODF DOM
● Represents the state of the document, with get/set

methods for manipulation. sheet.setCell(“A1”,“hello”)

– A Parser class that takes an input stream and
produces an ODF DOM object from it

– A Serializer class that takes an ODF DOM object
and writes it to an output stream

Modes of use

● Report generation
– Create empty ODF DOM object, query a

database, set data into the ODF object, then
create Serializer to write it out to ODF document.

● Search engines
– Create Parser, pass in stream to ODF document,

create ODF DOM object, call methods to query
document contents

● Mail Merge
– Create parser, pass in stream, get ODF DOM

object, find and replace content in the DOM, and
then create a Serializer to write it out again

Key insight

● Factored this way, an additional opportunity
emerges:

– Is ODF the only source/destination format of the
Parsers and Serializers? So long as they
produce/consume ODF, who cares what the
underlying data stream is?

– Why not have an ExcelParser that reads an
Excel document and creates an ODF DOM from
it?

– Why not have an PDFSeralizer that takes an
ODF DOM document and renders it as PDF?

Hub and Spokes Model

What you end up with
● A family of Parsers and Serializers which can be

treated polymorphically (pluggable), using a common
ODF DOM representation

● Could become the preferred way to manipulate all
office-like documents, not just ODF

● Makes choice of file format irrelevant from the
perspective of the application developer
– Creating an app that supports ODF & Office is the

same cost as creating one that supports only Office
– Reduces switching costs == greater ODF adoption

Things that we can build on

● OpenOffice.org UNO API's
● Apache POI (http://jakarta.apache.org/poi/)

– Java code for reading/writing MS Office binary
formats

● Apache FOP can render to PDF and SVG
● OpenDocument Fellowship has

– ODT to HTML
– DocBook to ODT

● J. David Eisenberg has some code in XSLT,
Java and Ruby (http://books.evc-cit.info/odf_utils/)

● Probably many others

http://jakarta.apache.org/poi/
http://books.evc-cit.info/odf_utils/

The end

A fuller exposition of this topic can be read in my
essay “Proposal for an OpenDocument Developers

Kit (ODDK)” posted on XML.org at
http://opendocument.xml.org/node/154

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

