

The World of ODF

Only a little bit more
than you need to know

Rob Weir
IBM
robert_weir@us.ibm.com
http://www.robweir.com/blog

Tshwane
June, 2008

mailto:robert_weir@us.ibm.com

Outline
● What is ODF?
● History of document

formats
● OASIS and the ODF

TC
● Standardization of ODF
● Packaging Model

● Accessibility
● Metadata
● Extending ODF
● Toolkits/Libraries
● ODF Interoperability

What is ODF?

Specification Coverage
● Storage formats for:

– Text documents
– Spreadsheet documents
– Presentation documents

● And the templates for the above

● Interesting subsets:
– Drawings
– Charts

Out of Scope
● Database (OpenOffice Base) format
● Clipboard formats
● Runtime API's as used by scripts
● Scripting languages
● User Interface

RELAX NG Schema
● Main schema defined in RELAX NG
● But also embedded markups defined:

– In XML Schema, e.g., MathML 2.0, XForms 1.0
– In DTD, e.g., XLink

● This makes validation more complicated

● Namespace-based Validation Dispatching Language
(ISO NVDL) can help here

Why change? Why Now?

ODF is an example of a bigger change

Application

Information

Old Style
Information is closely linked to the

application that created it.

Control is with the software developer not
the customer.

Application Application Application

Information

New Style
Information is represented using a real open standard not under

the control of a single vendor, and multiple applications can create
and access it interchangeably.

Control is with the customer not the software provider.

We started to see this in the 1990s

Application

Information

Old Style
Information is closely linked to the

application that created it.

Control is with the software developer not
the customer.

Browser Browser Browser

The Web

New Style
Information is represented using a real open standard not under

the control of a single vendor, and multiple applications can create
and access it interchangeably.

Control is with the customer not the software provider.

The trend will accelerate in the 2000s

Application

Information

Old Style
Information is closely linked to the

application that created it.

Control is with the software developer not
the customer.

Office Suite Web apps New apps

Documents

New Style
Information is represented using a real open standard not under

the control of a single vendor, and multiple applications can create
and access it interchangeably.

Control is with the customer not the software provider.

cyber.law.harvard.edu/epolicy/

This is part of the bigger “Open” movement

“It was the standardization around HTML that allowed the web to take off. It was not only the fact
that it is standard, but the fact that its open and the fact that it is royalty-free.

So what we saw on top of the web was a huge diversity and different business which are built on top
of the web given that it is an open platform.

If HTML had not been free, if it had been proprietary technology, then there would have been the
business of actually selling HTML and the competing JTML, LTML, MTML products. Because we
wouldn't have had the open platform, we would have had competition for these various different
browser platforms, but we wouldn't have had the web. We wouldn't have had everything growing on
top of it.

So I think it very important that as we move on to new spaces we must keep the same openness we
that had before. We must keep an open internet platform, keep the standards for the presentation
languages common and royalty free. So that means, yes, we need standards, because the money, the
excitement is not competing over the technology at that level. The excitement is in the businesses and
the applications that you built on top of the web platform.”

-- Tim Berners-Lee (W3C, inventor of the world wide web)

Why not just use PDF/A ?
● PDF is a good representation of the final, frozen, never-

to-be-edited digital equivalent of the printed page.

● But you lose some things:
– No spreadsheet formulas, so you can’t figure out

where the numbers came from.
– Review/comment threads are lost or collapsed, so the

record of who changed what when is lost.
– Mathematical equations are just images, diagrams are

now just pictures, making then impossible for assistive
technologies to render them properly to the blind

– Best to capture the document in the fullest information
state

Consider “The Wasteland”

History of Document Formats

The age of proprietary formats
● Created by a single vendor
● Controlled a single vendor
● Evolved by a single vendor

Restrictive Licensing
“...you may use documentation identified in the

MSDN Library portion of the SOFTWARE
PRODUCT as the file format specification for
Microsoft Word, Microsoft Excel, Microsoft
Access, and/or Microsoft PowerPoint ("File
Format Documentation") solely in connection
with your development of software product(s)
that operate in conjunction with Windows or
Windows NT that are not general purpose word
processing, spreadsheet, or database
management software products or an integrated
work or product suite whose components
include one or more general purpose word
processing, spreadsheet, or database
management software products.”

MSDN Licence, 1998

Data

Application

Operating System

Hardware

Traditional view of commercial software

Every layer depends on the layers beneath it

BIOS

System API’s

File formats

The rigidity of this model is being overcome

● There are storage devices that are independent
of hardware platform
– E.g., the various ISO optical disk standards

● There are applications which are independent
of operating systems
– OpenOffice, Firefox

● There are file formats which are independent
of applications
– SGML
– XML
– HTML
– PNG
– ODF

ODF

XForms,
MathML, XLink,

SMIL, Dublin Core

RELAX NG
XML

Unicode

The ODF Way:

Depend on other pre-existing standards,
especially bedrock web standards

A classic architectural principle says:

Only depend on things more stable than
yourself.

ODF tries to follow that rule.

Reuse of standards
“If I have seen a little further it is by
standing on the shoulders of Giants.”

Isaac Newton, letter to Robert Hooke, 1676

Choose reuse because:

●Reduced time to write specification
●Higher quality specifications
●Can leverage existing community expertise
●Can leverage existing education materials
●Better interop, especially in a word of
promiscuous mashups, not monolithic silos
●Network effects – synergy is good

OASIS and the ODF TC

● Organization for the Advancement of Structured
Information Standards

● Formally called “SGML Open”, Founded in 1993
● 600 corporation/organizations represented
● 5,000 participants from 100 countries
● 70 active technical committees (TC's)

● DITA, DocBook, ebXML, Election Markup
Language, SAML, UBL, WebCGM

● http://www.oasis-open.org/

OASIS ODF TC
● ~12 regularly attending TC members

– IBM, Sun, Novell, Microsoft, Google, KOffice, South
African Dept. of Science & Technology and assorted
individual contributors (consultants, academics, etc.)

– Microsoft just joined us.

– Three formal subcomittees that meet independently:
● Accessibility
● OpenFormula
● Metadata

Packaging Model

Design Requirements *
● Efficient Operation

– Small file sizes
– Ability to independently load and update subdocuments

● Compatibility with existing tools
– Subdocuments processable with standard tools
– The document itself should also
– Should be text-based

● Security
– Privacy
– Integrity

● Extensibility

*based on OO report on their analysis: http://xml.openoffice.org/package.html

Options considered

● Zip/JAR
● XML with base64 embeddings
● MIME
● .tgz files

So what do we have here?
● A Zip file containing:

– An XML manifest file
– Additional XML files to describe the doc’s

content, styles and metadata
– Possibly additional binary files for embedded

media files (images, etc)

– Same idea works for spreadsheet, text and
presentation documents

● Quick demonstration

Packaging
● Knowing just the packaging is enough to:

– Discover, edit, remove or index metadata
– Route documents
– Apply and verify digital signatures
– Replace bulk content
– Search for viruses
– Check security constraints

Some comparative metrics

● 176 Word documents from a document library

● Convert all to ODF format

● Record:
– Number of pages
– ZIP size
– Numbered of contained files
– Numbered of contained XML files
– Total uncompressed size of contained files
– Total uncompressed size of contained XML files.

Page Count

Fr
eq

ue
nc

y

0 100 200 300 400

0
20

40
60

80
10

0
12

0

Mean = 34 pages
Median = 8 pages

* All charts and calculations done with the excellent open source “R” environment; http://www.r-project.org/

0.0 e+00 5.0 e+06 1.0 e+07 1.5 e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ODF Compression

Original DOC size

C
om

pr
es

si
on

 R
at

io

Compression ratio =
Size of ODF/Size of DOC

Mean = 0.38

Internationalization
● Character set

– Based on XML 1.0 which supports Unicode 3.1
– Supports most writing systems of the world

● Bidirection Text
– Fully supported

● IRI’s (Unicode URL’s)
– Fully supported

● Implementations of ODF, such as OpenOffice.org are
along the most translated, most internationalized
software applications in the world

Accessibility

ODF Accessibility – Initial
Problem
● In US Federal Government bids software must be accessible

by Persons with Disabilities.
– Section 508 – US Rehabilitation Act

● Now becoming important for States, e.g. Commonwealth of
Massachusetts
– Also California, Texas, Minnesota

● ODF Accessibility issues were raised by lobbyists in
Massachusetts.

● Leaders from IBM worked with the ODF TC to form the
Accessibility SC (see next slide).

● OASIS ODF AccSC was formed and responded very
quickly.

Committee Formed
● IBM
● Sun
● Design Science
● The Paciello Group
● Capital Accessibility
● Institute of Community Inclusion
● Royal National Institute for the Blind
● Duxbury Systems

GAP Analysis
● The Accessibility Subcommittee (AccSC) was

formed in January 26, 2006.
● A GAP analysis was conducted.
● Comparison to W3C WCAG 1.0 and the Microsoft

Office suite
● Nine issues were identified and submitted to the TC

during May 2006.

TC Approval

● Eight of the nine issues were approved
● Tables as first class presentation objects will be in

ODF 1.2
– 1.1 workaround – embed as spreadsheet

● ODF 1.1 announced February 13, 2007

9 Fixes (as seen in Symphony)
1. Soft page breaks
● Notes 8 uses <text:soft-page-break> element and <text:use-

soft-page-breaks> attribute

9 Fixes (as seen in Symphony)
2. Support table header structural markup
● Notes 8 supports table row/column headers.
● IAccessibleTable:RowHeader and

IAccessibleTable::ColumnHeader provide accessible
information

9 Fixes (as seen in Symphony)
3. Provide for author specified, logical navigation in

presentations
● Special dialog for logical navigation order.

9 Fixes (as seen in Symphony)
4. Alternative text for image map elements
● Image map elements have <svg:title> (alt text) and

<svg:desc> (description).
● IAccessibleHyperlink::description will display <svg:title>.

If <svg:title> is null IAccessibleHyperlink::description will
display the <svg:desc>.

9 Fixes (as seen in Symphony)
5. Alternative Text for Drawing Layer

Alt text and long description
fields added.

9 Fixes (as seen in Symphony)
6. Alternative Text for Drawing Objects
● Text fields for alternative text & long description.
● Exposed via MSAA's name and description.

9 Issues - Notes 8
Implementation
7. Relations between Objects & Captions
● Relation is exposed via ODF <draw:caption-id>
● And via the IAccessible2 describedBy relation.

9 Fixes (as seen in Symphony)
8. Establish text hints for hyperlinks

The description is saved to <svg:title> and is exposed by IAccessibleHyperlink:description.

9 Fixes (as seen in Symphony)

9. Tables in Presentations
● Work-around for ODF 1.1

– Encoded as embedded spreadsheet
● To be encoded as table:table in ODF 1.2

Fostering Innovation - DAISY

● ODF 1.1 based docs can be used as content for
DAISY talking books.

● Dave Pawson from RNIB is an XML and XSLT
expert and he made very significant contributions to
the spec.

● Soft page breaks were added to ODF 1.1
● ODF 1.1 content is being transformed into DAISY

content.
● Open standards developed by industry experts

facilitate innovation.

Fostering Innovation - Duxbury

● Duxbury Systems
● Tooling to create Braille content
● Compared to Word 2003 Duxbury gives ODF higher

marks in the area of documentation, simplicity -- and
reusability:
– ODF importer shares code in common with importers for

OpenXML, HTML, DAISY/NIMAS, and generic "XML".
– ODF allowed re-use of table importer between word

processing and spreadsheet editors
– This ease of reuse lowers the price barrier for creating

Braille content.

Duxbury - ODF to Braille
● Unpack content.xml
● Preprocess

– Resolve issues that cause XML parsing problems
● Transform with XSLT (od.xsl)

– “Pick out” the parts of interest
– Omit extraneous items
– Set up “hints” for post-processing

● Map styles in XML (xsmod.xml)
– Allows application to different document standards

● Postprocess
– Re-encode characters
– Eliminate most empty nodes
– Transform “hints” to direct DBT codes

● Pack <filename>.dxp

Metadata

Metadata
● ODF includes bibliographic metadata according to Dublin

Core Metadata:
– title, description, subject, creator, date, language

● Also, includes additional metadata in ODF namespace:
– Generator, keywords, initial-creator, printed-by, creation-

date, print-date, template, editing-cycles, editing-duration,
document-statistics, user-defined

● An implementation can also freely add their own metadata,
either in an additional XML file or in an existing XML file.

● A finer-grained approach to content-level metadata will be
added in ODF 1.2, based on the W3C’s RDF standard.

Extensibility
● Adding additional files to the document

archive
– Free to do this so long as you register the

additional items in the manifest file
– Good for adding any additional XML that

describes or augments the entire document
● Adding additional XML markup to the

content.xml in your own XML namespace

Toolkits & Libraries

The potential
● ODF – a platform and application neutral office

file format
● Document data is no longer trapped in proprietary

black box binaries

● This can lead to a “golden age” of document
processing, both client and server side, with much
innovation

● “We have it in our power to create the world over
again” -- Thomas Paine

More than just editors
(20 Prototypical App Dev Scenarios)

1.Interactive creation in an a heavy-weight client
application

2.Interactive creation in a light-weight web-based
application

3.Collaborative (multi-author) editing
4.Automatic creation in response to a database
query (report generation)

5.Indexing/scanning of document for search

20 Prototypical
App Dev Scenarios

6.Scanning by anti-virus
7.Other types of scanning, perhaps for regulatory
compliance, legal or forensic purposes

8.Validation of document, to specifications, house
style guidelines, accessibility best practices, etc.

9.Read-only display of document on machine
without the full editor (viewer)

10.Conversion of document from one editable
format to another

20 Prototypical
App Dev Scenarios

11.Conversion of document into a presentation format, such as
PDF, PS, print or fax

12.Rendering of document via other modes such as sound or
video (DAISY Talking Book)

13.Reduction/simplification of document to render on a sub-
desktop device such as cell phone or PDA.

14.Import of data from an office document into a non-office
application, i.e., import of spreadsheet data into statistical
analysis software.

15.Export of data from a non-office application into an office
format, such as an export of a spreadsheet from a personal
finance application.

20 Prototypical
App Dev Scenarios

16.Application which takes an existing document and outputs a
modified version of that presentation, e.g., fills out a template,
translates the language, etc.

17.Software which adds or verifies digital signatures on a
document in order to control access (DRM)

18.Software which uses documents in part of a workflow, but
treats the document as a black box, or perhaps is aware of only
basic metadata.

19.Software which treats documents as part of a workflow, but
is able to introspect the document and make decisions based on
the content.

20.Software which packs/unpacks a document into relational
database form.

The Problem

● 706 page ODF Specification

● No objections to it as a specification – it is what it
needs to be

● Written from the perspective of word processor
implementors

● Too much to ask the average app developer to
master

Analogy with XML --
Who actually reads this stuff?

What is really used is SAX

And DOM

The Challenge

We need an ODF API that exposes a higher level abstraction
of ODF to application developers, so they can quickly

become productive with ODF processing without having to
master a 700 page specification

“Create a loan amortization spreadsheet in 30 lines of code”

Desirables

● Open source
● A convergent effort – bring together the projects

that are already working in this area
● Wide range of language bindings, Java, Python,

Ruby, C++, etc.
● Consider the API itself for standardization

This becomes the preferred way of working
with ODF, the layer that the innovation builds
upon

Some design ideas
● Useful to think of the toolkit in three classes:

– The document representation – ODF DOM
● Represents the state of the document, with get/set methods for

manipulation. sheet.setCell(“A1”,“hello”)

– A Parser class that takes an input stream and produces an
ODF DOM object from it

– A Serializer class that takes an ODF DOM object and
writes it to an output stream

Modes of use
● Report generation

– Create empty ODF DOM object, query a database, set
data into the ODF object, then create Serializer to
write it out to ODF document.

● Search engines
– Create Parser, pass in stream to ODF document,

create ODF DOM object, call methods to query
document contents

● Mail Merge
– Create parser, pass in stream, get ODF DOM object,

find and replace content in the DOM, and then create
a Serializer to write it out again

Key insight
● Factored this way, an additional opportunity

emerges:

– Is ODF the only source/destination format of the
Parsers and Serializers? So long as they
produce/consume ODF, who cares what the
underlying data stream is?

– Why not have an ExcelParser that reads an Excel
document and creates an ODF DOM from it?

– Why not have an PDFSeralizer that takes an ODF
DOM document and renders it as PDF?

Hub and Spokes Model

What you end up with

● A family of Parsers and Serializers which can be treated
polymorphically (pluggable), using a common ODF DOM
representation

● Could become the preferred way to manipulate all office-like
documents, not just ODF

● Makes choice of file format irrelevant from the perspective of
the application developer
– Creating an app that supports ODF & Office is the same

cost as creating one that supports only Office
– Reduces switching costs == greater ODF adoption

Things that we can build on

● OpenOffice.org UNO API's
● Apache POI (http://jakarta.apache.org/poi/)

– Java code for reading/writing MS Office binary
formats

● Apache FOP can render to PDF and SVG
● OpenDocument Fellowship has

– ODT to HTML
– DocBook to ODT

● J. David Eisenberg has some code in XSLT, Java
and Ruby (http://books.evc-cit.info/odf_utils/)

● Probably many others

http://jakarta.apache.org/poi/
http://books.evc-cit.info/odf_utils/

Odfpy

Low Level, close to the XML
Maps validity errors into runtime
exceptions.

Odfpy

odf4j

Part of OpenOffice.org Toolkit project. Still early.

AODL

An Open Document Library – C# Library

OpenOffice::OODoc

The Perl Open OpenDocument Connector.

Relatively complete and established.

Toolkits I've Looked At

Name Language WP SS Pres URL
Python X X X
Python
PHP X X

AODL C# X X
Perl X
Python X

Odf4j Java X X X
OpenOffice::OODOC Perl X X

Odfpy http://opendocumentfellowship.org/projects/odfpy
OooPy http://ooopy.sourceforge.net/
OpenDocumentPHP http://opendocumentphp.org/

http://opendocument4all.com/content/view/13/29/
OpenOffice::OOCBuilder http://search.cpan.org/dist/OpenOffice-OOBuilder/OOCBuilder.pm
PyOpenOffice http://www.bezirksreiter.de/PyOpenOffice.htm

http://odftoolkit.openoffice.org/source/browse/odftoolkit/odf4j/
http://search.cpan.org/dist/OpenOffice-OODoc/

ODF Interoperability

What is Interoperability?

“Interoperability means the ability of information and
communication technology (ICT) systems and of the
business processes they support to exchange data and
to enable the sharing of information and knowledge.”

IDABC's “European Interoperability Framework”
http://ec.europa.eu/idabc/servlets/Doc?id=19529

Legos – the intuitive example

Interoperable since 1958.

0.002mm tolerances.

Many ODF Implementations
OpenOffice

Google Docs

KOffice
AbiWord

MS Office

Lotus Symphony

SEPT Mobile Office

With N editors, there are N*(N-1) interoperability paths: 2, 6,12, 20, 30, 42, 56, 72,90

0 2 4 6 8 10

0
2

0
4

0
6

0
8

0

number of applications

in
te

rc
h

a
n

g
e

 p
o

ss
ib

ili
tie

s

And don't forget the non-editors

Before:

Now:

Paper

Web

Web Service Database

Search Engine
A single document
can easily be touched by a dozen
different applications from
different vendors during its
lifetime.

The ultimate destination of your
document is unknown to you and
likely unknowable.

The Interoperability Tax

Web

Web Service Database

Search Engine

= processing step with loss caused by poor interoperability

Losses may be:

●Fidelity
●Data
●Performance
●User frustration
●Reputation
●Opportunity

Perfect Interoperability is Easy*

* But expensive

Cost per transaction

Le
ve

l o
f f

id
el

ity

Automation

Manual rework

total_cost =

%automatic*cost_automatic
+

%manual*cost_manual

Redo whatever
automation fails
to handle

The Goal

Cost per transaction

Le
ve

l o
f f

id
el

ity

Starting Point

Manual rework
Automation

Improve the level of
interoperability within the
ecosystem

A range of available editors

Visual Specificity

St
ru

ct
ur

e

emacs

wiki editor

HTML editor

Photoshop

Illustrator

OpenOffice

And a range of formats

Visual Specificity

St
ru

ct
ur

e

PDF

Plain Text

HTML

ODF

JPEG

DITA/DocBook

And in terms of control...

Control of the Receiver

C
on

tro
l o

f t
he

 A
ut

ho
r

PDF

HTML
ODF

JPEG

DITA/DocBook

User-to-User fidelity
is high here

interoperability with business
processes is high here

Modern WYSIWYG Editors
are caught in the middle

So what do you emphasize?

● Modern word processor has evolved into a multi-
paradigm tool that supports different styles of use:
– Highly structured data oriented use
– Ad-hoc, visually-oriented layout

● Users have expectations that word processors are
suited for both uses. Until the last person who ever
used a typewriter is dead, this will continue.

Traditional Trade-offs

1.Visual Richness of authoring
environment
2.Power
3.Ability to say anything
4.Pixel Perfection
5.High Fidelity

1.Accessibility
2.Universality
3.Ability of everyone
to understand
4.Structure
5.Semantic richness

Not a Law of Nature, but a tendency. The glory goes to those
who can solve both problems at once.

Things that cause problems

● Application issues
– Implementation defects
– Functional subsets
– Functional supersets (extensions)

● Standard issues
– Specification errors
– Undefined behaviors
– Implementation-defined behaviors

The Conundrum

ODF
Standard

OpenOffice
KOffice

Google Docs & Spreadsheets

What is the effective overlap?

Solution Patterns
● Standards-development

– Multi-vendor, multi-stakeholder participation
– Expert review
– Implementation concurrent with standards development

● Standards
– Detailed conformance clauses
– Deep schemas, allowing deep validation
– Reference implementations

● Post-standardization activities
– Translation of standard
– Development of conformance assessments
– Multiple implementations

A powerful pattern

Standard

Reference Implementation

Test Suite

A powerful pattern
● The standard contains the definition of a

conformant document
– (but the standard might have errors or ambiguities)

● The test suite exercises and validates each feature of
the standard
– (but the test suite might have errors or omissions)

● The reference implementation is written to the
standard, and tested with the test suite
– (but the implementation might have errors or missing

functionality)

Checks and Balances

● A test case fails. What is the cause?
– An error in the application?
– Is it an error in the test suite?
– An error in the standard?

● Identify the cause of the failure
● Fix
● Continue until you have a complete test suite and a

reference implementation that passes all of the test
cases.

A Reference Implementation
● Should implement 100% of the standard, including

all optional requirements.
● It should be the first one, or one of the first

applications to implement any new feature in the
standard.

● For any implementation-defined behaviors, it should
document how it behaves.

● Although it may extend the standard, it should have
a mode of operation where it is strictly conformant.

A Test Suite: A rough estimate

● ~ 700 page ODF specification
● ~ 5 testable statements per page
● ~ 4 test cases per statement to test limits, positive

and negative test cases, etc.

● So, on the order of 10,000 test cases, or 2 PY of
effort.

Things that foster interoperability
● In applications:

– use of interoperable data
formats

– a strictly conforming
mode of operation

– guidance to the user on
how to use the product
in an interoperable way

– inclusion of document
templates and defaults
that encourage
interoperability

– allowing validation of
documents

● In data formats
– clean separation of

content, attributes,
behavior and metadata

– reuse of existing,
established standards

– thorough review
– standardization

Things that foster interoperability
● In organizations:

– adoption of a single
standard document
format

– adoption of applications
with proven
conformance to that
document standard

– training of users on how
to create interoperable
documents

● In users:
– capture information at

the highest level
possible

– adding metadata
– providing annotations

for accessibility
– using named styles

Progress in Interoperability

● Test Suites
● Validators
● Translators

ODF Test Suite

http://develop.opendocumentfellowship.org/testsuite/

ODF Validator

http://opendocumentfellowship.org/validator

ODF Add-in for Word

http://odf-converter.sourceforge.net/

ODF Plug-in for MS Office

http://www.sun.com/software/star/openoffice/

ODF Interoperability Camp

Proposed ODF IIC TC

● Implementation
● Interoperability
● Conformance

OpenOffice

Google Docs

KOffice
AbiWord

MS Office

SEPT Mobile Office

Symphony

With N editors, there are N*(N-1) interoperability paths

We must reduce this problem...

OpenOffice

Google Docs

KOffice

AbiWord

MS Office

Symphony

SEPT Mobile Office

Standard
Test Suite

RI

With N editors, there are N interoperability tests

To this problem (which we know how to solve)

	Slide 1
	outline
	what is odf?
	covered
	out-of-scope
	Slide 6
	Slide 7
	ODF is an example of a bigger change
	We started to see this in the 1990s
	The trend will accelerate in the 2000s
	This is part of the bigger “Open” movement
	Berners-Lee on open standards
	Why not just use PDF/A ?
	Consider T.S. Eliot’s “The Wasteland”
	history of doc formats
	Word processor timeline
	Slide 17
	Slide 18
	Slide 19
	The rigidity of this model is being overcome
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	ODF TC Timeline
	Slide 28
	history of packaging
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Internationalization
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Extensibility
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

