Return Type and Value: number - The year in the Gregorian calendar [ISO 8601 §3.2.1] for the date and/or time having the given date-value. The range of return values is determined by the date base currently in use (§18.17.4).

However, if date-value is out of range for the current date base value, \#NUM! is returned.

[Example:

$\operatorname{YEAR}(\operatorname{DATE}(2006,1,2))$ results in 2006
YEAR (DATE (2006, 0, 2)) results in 2005
YEAR("2006/1/2 10:45 AM") results in 2006
$\operatorname{YEAR}(30000)$ results in 1982 for the 1900 date base system, or 1986 for the 1904 date base system

end example]

18.17.7.352 YEARFRAC

Syntax:

YEARFRAC (start-date , end-date [, basis])
Description: Computes the fractional number of years represented by the number of whole days between two dates, start-date and end-date., according to basis.

Arguments:

Name	Type	Description	
start-date	number	The period's starting date. start-date can be earlier than, the same as, or later than end-date.	
end-date	number	The period's ending date.	
basis	number	The truncated integer type of day count basis to use, as follows:	
		Value	Day Count Basis
		0 or omitted	US (NASD) 30/360. Assumes that each month has 30 days and the total number of days in the year is 360 by making the following adjustments: - If the date is 28 or 29 February, it is adjusted to 30 February. - For months

Name	Type	Description	
		with 31 days, if the first date has a day value of 31, the date is converted to day 30. If the second date has a day value of 31, it is changed to 30 days as long as the first date was not 28 or 29 February, in which case it does not change.	

All arguments are truncated to integers.
Return Type and Value: number - The fractional number of years represented by the number of whole days between two dates, start-date and end-date., according to basis. If the Actual/actual basis is used, the year length used is the average length of the years that the range crosses, regardless of where start-date and enddate fall in their respective years.

However, if the value of basis is out of range, \#NUM! is returned.

[Example:

YEARFRAC(DATE $(2006,1,1)$, $\operatorname{DATE}(2006,3,26))$ results in 0.236111111
$\operatorname{YEARFRAC}(\operatorname{DATE}(2006,3,26), \operatorname{DATE}(2006,1,1))$ results in 0.236111111
YEARFRAC(DATE $(2006,1,1), \operatorname{DATE}(2006,7,1))$ results in 0.5
YEARFRAC(DATE $(2006,1,1), \operatorname{DATE}(2007,9,1))$ results in 1.666666667
YEARFRAC(DATE $(2006,1,1), \operatorname{DATE}(2006,7,1), 0)$ results in 0.5
YEARFRAC(DATE $(2006,1,1), \operatorname{DATE}(2006,7,1), 1)$ results in 0.495890411
YEARFRAC(DATE $(2006,1,1), \operatorname{DATE}(2006,7,1), 2)$ results in 0.502777778
YEARFRAC(DATE $(2006,1,1), \operatorname{DATE}(2006,7,1), 3)$ results in 0.495890411
YEARFRAC(DATE $(2006,1,1), \operatorname{DATE}(2006,7,1), 4)$ results in 0.5
$\operatorname{YEARFRAC}(\operatorname{DATE}(2004,3,1), \operatorname{DATE}(2006,3,1), 1)$ results in 1.998175 (because 2004 is a leap year and Actual/actual basis is used, the average year length is 365.3333)
end example]

18.17.7.353 YIELD

Syntax:

YIELD (settlement , maturity , rate , pr , redemption , frequency [, [basis]])
Description: Computes the yield on a security that pays periodic interest.

Mathematical Formula:

If there is one coupon period or less until redemption, YIELD is calculated as follows:
YIELD $=\frac{\left(\frac{\text { redempion }}{100}+\frac{\text { rate }}{\text { frequency }}\right)-\left(\frac{\text { par }}{100}+\left(\frac{A}{E} \times \frac{\text { rate }}{\text { frequency }}\right)\right)}{\frac{\text { par }}{100}+\left(\frac{A}{E} \times \frac{\text { rate }}{\text { frequency }}\right)} \times \frac{\text { frequency } \times E}{D S R}$
where:

- $A=$ number of days from the beginning of the coupon period to the settlement date (accrued days).
- $D S R=$ number of days from the settlement date to the redemption date.
- $E=$ number of days in the coupon period.
- frequency $=$ argument frequency
- par = argument $p r$
- rate = argument rate
- redemption $=$ argument redemption

If there is more than one coupon period until redemption, YIELD is calculated through some number of iterations. The resolution uses the Newton method, based on the formula used for the function PRICE. The yield is changed until the estimated price given the yield is close to price.

Arguments:

Name	Type	Description
settlement	number	The security's settlement date.
maturity	number	The security's maturity date.
rate	number	The security's interest rate.
$p r$	number	The security's price.
redemption	number	The security's redemption value per \$100 face value.
frequency	number	the number of coupon payments per year. (For annual payments, frequency is 1; for semiannual payments, frequency is 2; for quarterly payments, frequency is 4.) frequency is truncated to an integer.

